フーリエ解析と関数解析学
フーリエ解析と関数解析学

新井仁之 著

培風館,2001年7月

本書はフーリエ解析と関数解析の基礎から応用までを丁寧に解説した入門書です.フーリエ解析,緩増加超関数,直交多項式,ウェーブレット,スペクトル分解,シュレーディンガー作用素のスペクトル,フレーム理論の基礎が体系立ててまとめられています.
本書に関連した情報・アドバイス,訂正を公開しています.
情報・アドバイス (pdf) [01年12月3日更新]
正誤表 初版第1刷用 (pdf) [06年12月4日更新]
正誤表 初版第2刷用 (pdf) [06年12月4日更新]
正誤表 初版第3刷用 (pdf) [06年12月4日更新]
以下は,本書中の図版を動画にしたものです
フーリエ級数の収束 1 (Animation : Convergence of a Fourier Series)
フーリエ級数の収束 2 (Animation : Convergence of a Fourier Series)
ギブス現象 (Animation : Gibbs phenomena)
ディリクレ核 (Animation: Dirichlet kernel)
備考

拙著『フーリエ解析学』では,離散フーリエ解析を緩増加超関数の立場から論じてあります.また多変数フーリエ級数,多変数フーリエ変換に関する話題をはじめ多次元システムへの応用などにも言及してます.こちらも参考にしてください.